
Compiling High Performance Recursive Filters
Supplementary Material

Gaurav Chaurasia1 Jonathan Ragan-Kelley2 Sylvain Paris3 George Drettakis4 Fredo Durand1

1MIT CSAIL 2Stanford University 3Adobe 4Inria

1 Our syntax and equivalent pseudo code

Our compiler and language are built on top of Halide. Here, we
describe our representation and generated code, by example, in terms
of the resulting Halide constructs and the logical loops they generate.

We define IIR filters as a series of linear filters of some coefficients,
each operating in a specific dimension and direction:
RecFilter F("filter");
RecFilterDim x("x", image_width); // dimensions
RecFilterDim y("y", image_height); // dimensions
F(x,y) = In(x,y); // init
F.add_filter(+x, {a0, a1, a2}); // 1st filter
F.add_filter(-y, {a0, a1, a2}); // 2nd filter

Listing 1: Our syntax

Internally, we maintain a Halide Func that computes the filters. The
initialization simply creates a Func that uses the same expression
to initialize all pixels. This also creates the causal and anticausal
scan variables rx, ex, ry, ey for each dimension using the image
size as their extents. Each new filter adds a new update definition.
In the following example, the first filter adds a causal filter in the x
dimension. We use the corresponding scan variable rx to create the
update definition that updates the current pixel using previous pixels
in the x dimension using the corresponding filter coefficients.
Func R(F.name());
RDom rx(0, image_width); // causal scan var x
RDom ry(0, image_height); // causal scan var y
Expr ex = image_width-1-ry; // anticausal scan var x
Expr ey = image_height-1-ry; // anticausal scan var y

R(x,y) = In(x,y); // init

// update defs 1 and 2
R(rx,y) = a0*R(rx,y) + a1*R(rx-1,y) + a2*R(rx-2,y);
R(x,ey) = a0*R(x,ey) + a1*R(x,ey-1) + a2*R(x,ey-2);

Listing 2: Internal Halide representation

The corresponding loops are sketched as follows:

2 Tiling transformations

Given a pipeline of recursive filters specified as above, our goal is to
mechanically transform it to enable high-performance parallel tiled
computation. To this end, programmers rely on a split operator
and specify tile size for each dimension to be split.
F.split(x, tile_width, y, tile_height ...);

This simple command results, under the hood, in complex code
transformations that generate new passes corresponding to inter- and
intra-tile computation. In this section, we describe the mathemati-
cal transformations corresponding to a split for different scenarios
depending on whether recursive filters share the same dimensions
or not and if they are causal or anticausal. In the next section, we
discuss how the resulting passes can be organized for increased
efficiency.

Algorithm 1 Pseudo-code for filter

for all y do // initialize
for all x do

f(x, y)← In(x, y)
end for

end for
for all y do // 1st filter or update def

for rx = 0 to image width− 1 do
f(rx, y)← a0f(rx, y)+a1f(rx−1, y)+a2f(rx−2, y)

end for
end for
for ry = 0 to image height− 1 do // 2nd filter or update def

for all x do
r̄y ← image height− 1− ry
f(x, r̄y)← a0f(x, ry)+a1f(x, r̄y+1)+a2f(x, r̄y+2)

end for
end for

To gain intuition, we first discuss the case of a single 1D filter
before looking at multiple filters, either on the same axis or along
orthogonal axes. We also begin with only causal filters, i.e., filters
that process data in order of increasing indices. We explain at the
end how to handle anti-causal filters that process data in the reverse
order.

2.1 Background: single 1D filter

We start by decomposing a 1D recursive filter f of order k that
traverses the data in causal order, i.e., in the order of increasing
indices. The derivation that follows is known, for instance, since it
can be seen as a special case of Nehab’s derivation in 2D [2011].
We include it for completeness since it is a central building block of
our approach. In our paper, we use the definition most commonly
used for image processing where the filter is first initialized with the
input image I and then updated using a recursive formulation. In
this context, the definition of a filter is:

initialization: f(x)← I(x) (1a)

recursion: f(x)←
k∑

j=0

ajf(x− j) (1b)

where {ai} are the coefficients defining the filter.

Then, we decompose the image domain into tiles of size t > k and
express the pixel position in this coordinate system. We name xo
the tile index and xi ∈ [0; t − 1] the pixel index within the tile,
that is, x = txo + xi. We use these variables to split the sum in
Equation (1b) into an intra-tile term including only the pixels within
the tile xo and an inter-tile term with pixels outside it. For clarity,
we introduce fxo (xi) = f(xot + xi) and mi = min(xi, k) to get:

fxo (xi)←
mi∑
j=0

ajfxo (xi − j) +
k∑

j=mi+1

ajfxo (xi − j) (2)

When the right term is not empty, it accesses data in the previous



(a) naive 1D computation

step 1
intra-tile scan

one single
global scan

+ ++
+ ++

(b) tiled 1D computation

step 3
intra-tile scan

with tails

step 2
inter-tile scan

on tails only

Figure 1: Single 1D filter. (a) Naive sequential computation. (b)
We transform it into a tiled scheme to improve performance. Step
1: we perform a scan on each tile in parallel. Step 2: we update
the tails (the last elements of each tile) in order. Because of the
order constraint, we cannot parallelize it; this is a fast operation
nonetheless because of the small number of elements touched. Step
3: we update each tile in parallel to get the final result.

tile, which we emphasize by changing the indices:

fxo (xi)←
mi∑
j=0

ajfxo (xi − j)︸ ︷︷ ︸
intra-tile computation

+

k−mi∑
j=1

ajfxo−1(t− j)︸ ︷︷ ︸
correction term

(3)

This expression is the first step toward the tiled computation scheme.
The left term depends only on data within a tile and thus, can be
computed independently for each tile in parallel if we ignore the
right term. It is a recursive filter f intra with same coefficients as the
original filter but computed at the tile level:

initialization: f intra
xo (xi)←

{
I(xot + xi) if xi ∈ [0; t− 1]

0 otherwise
(4a)

recursion: f intra
xo (xi)←

k∑
j=0

ajf
intra
xo (xi − j) (4b)

These intra-tile values f intra
xo (xi) can be “corrected” into the filter

values fxo (xi) by adding to them a linear combination of the last
k elements of the previous tile xo − 1. We call these elements the
tail of that tile. We provide the detail of the derivation in Sec. 3.
It is based on an induction on xi comparing Equations 3 and 4b.
Further, the coefficients of the linear combination are functions of
the {aj} coefficients only, that is, they can be precomputed. We
precompute a t × k filter matrix P that allows us to compute the
vector fxo =

(
fxo (0), . . . , fxo (t − 1)

)
from fxo−1 and the last k

elements of f intra
xo =

(
f intra
xo (0), . . . , f intra

xo (t− 1)
)
:

fxo ← f intra
xo + PTk(fxo−1) (5)

where Tk is the operator that selects the last k elements or rows
of its arguments. The filter matrix P computes the effect of the
filter of any k elements on subsequent t elements. The details of the
algorithm to construct P are given in Sec. 3.

One could use Equation 5 naively by first computing all the {f intra
xo }

and then updating them by going through them in order and ap-
plying Equation 5. This scheme is inefficient because the last step
goes through all the values in a constrained order, which prevents
parallelism. Instead, a tile-friendly procedure is as follows (Fig. 1).

1. Intra-tile computation: We compute the intra-tile values f intra
xo (xi)

using Equation 4 for each tile. This can be done in parallel at the tile
level (Fig. 1, step 1).

{ {{

+

+

+

+

+

+

+

1
2
3

1
2
3

1
2
3

1
2
3

(a) naive multiple 1D scans

(b) tiled multiple 1D scans

step 1a
intra-tile scans

one global
scan per �lter

step 3
intra-tile scan

with tails

step 2
inter-tile scans

on tails only

step 1b
per-scan

per-tile tails

+ +

+
+
+

+
+
+

+
+
+

Figure 2: Mutliple 1D filters. (a) Naive sequential computation.
One can apply the single-filter scheme (Fig. 1b) once per filter but
this does not fully exploit the locality of operations. (b) We treat
all filters at once to minimize alternation between intra- and inter-
tile steps. Step 1a: we apply all filters within each tile in parallel.
Step 1b: we save a copy of the tails after each filter. Step 2: we
sequentially update the tails using the tails of all the preceding filters
at the previous tile. Step 3: we update each tile in parallel using all
the tails at the previous tile to get the final result (step 3).

2. Inter-tile tail computation: We use Equation 5 only to update the
tail of each tile, i.e.: Tk(fxo )← Tk(f intra

xo ) + Tk(P)Tk(fxo−1). The
order is constrained but the operation is fast because it concerns only
k pixels per tile (Fig. 1, step 2).

3. Intra-tile update: Now that the tails are computed, Equation 5
can be applied to each tile in parallel (Fig. 1, step 3).

This procedure is illustrated in Figure 1. It transforms the original
filter (Eq. 1) into 3 sets of subfunctions:
– the intra-tile filters {f intra

xo },
– the tails {Tk(fxo )} recursively computed over the entire image,
– and the final intra-tile values {fxo}.

We now build on more complex cases using the above transformation
as a template.

2.2 Multiple 1D filters along the same dimension

We now consider the case where several filters are applied along the
same axis. A simple approach can be to apply the method described
in the previous section to each filter. The drawback of this approach
is that it alternates between intra-tile and inter-tile operations, which
degrades the locality of the computation and slows down data access.
In this section, we introduce a transformation that handles all the
filters at once and avoids this alternation. The derivation proceeds
similarly to the single-filter case. We provide the details in Sec. 3
and outline the main steps and results below.

We consider n recursive filters f1, . . . , fn, applied one after each
other on the same 1D data, that is, f2 is initialized using the result of
f1 and so on. As previously, we define their intra-tile counterparts,
{f intra

1,xo}, . . . , {f
intra
n,xo}. The main difference with the single-filter

case is that updating these functions into the final results also uses
the tails of the previously applied filters in addition to its own. That



+

+

step 1a
intra-tile scans

step 1b
per-scan per-tile per-dimension tails

step 2
inter-tile scans on x tails

step 3b
inter-tile scans on y tails

step 3a
intra-tile scans on x tails

+

+

+

+

+

+

+

+

+

+

+

+

+

+

step 4
intra-tile scans with tails from all dimensions

+

+

+

+

+ +

++

+ + +

+ + +

+

+

+

+

+ + +

+ + +

+

+

+

+

+

+

+

+

+

+

+

+

+ + + + + +

Figure 3: Multiple 2D filters. Step 1a: we compute all filters within each tile in parallel. Step 1b: we copy the tails after each filter. Step 2: we
complete the tails of all the filters along the x dimension using the 1D case as in Fig. 2. Step 3a: to account for cross-dimensional residuals,
we apply the y filters on all x tails (vertical arrows) and incorporate these into all the y tails (corner arrows). Step 3b: we use these residuals
to complete the y tails. Step 4: we compute the final result using the completed tails of previous tiles from all filters.

is, for the j th filter, we have j matrices {Pj,`} with ` ∈ [1; j] to
account for the tails at the previous tile:

fj,xo ← f intra
j,xo +

j∑
`=1

Pj,`Tkj (f`,xo−1) (6)

We give the details of the Pj,` matrices in Sec. 3. We build upon
this equation to design our transformation (Fig. 2).

1. Intra-tile computation and tail storage: For each filter in order,
we compute its intra-tile subfunctions {f intra

j,xo} in parallel (Fig. 2,
step 1a). We do this computation in place, i.e., we overwrite f intra

j,xo

with f intra
j+1,xo . Since we need the tails {Tkj (f intra

j,xo )} for all j, we copy
them to a new location before overwriting them. At the end of this
step, we have in memory f intra

n,xo and all {Tkj (f intra
j,xo )} (Fig. 2, step 1b).

2. Inter-tile computation: We update the tails using Equation 6
applied only to tails (Fig. 2, step 2): Tkj (fj,xo ) ← Tkj (f intra

j,xo ) +∑j
`=1 Tkj (Pj,`)Tkj (f`,xo−1).

3. Intra-tile update: We update the tiles in parallel using the same
equation (Fig. 2, step 3).

This transformation generates the same 3 categories of subfunctions
as the single-filter case.

2.3 Multiple filters along different dimensions

We now derive the transformation for the generic case where multiple
filters are applied along different axes. The first remark is that linear
recursive filters are separable along dimensions, they commute, and
we can reorder them to group them per axis. That is, we can assume
without loss of generality that all the x filters come first, then all the
y filters, and so on. We start with the 2D case and then describe its
extension to more dimensions.

2.3.1 Two-dimensional case

We consider a 2D domain with nx filters along the x axis followed
by ny filters along the y axis; this is illustrated in Fig. 3 with a
different color per filter. We use the same strategy and perform all
the global inter-tile computation only on the tails while doing dense
per-pixel computation always in an intra-tile fashion so that it can
be parallelized. We also minimize the alternation between inter-tile
and intra-tile computation. Because of the complex dependencies
introduced by the multiple dimensions, there is no concise update
formula equivalent to Equations 5 and 6. Instead we proceed step
by step, allowing Equation 6 to be applied multiple times while
respecting all dependencies. We use the notation fjx,jy,xo,yo for the
(xo, yo) tile processed by the j th

x first x filters and the j th
y first y filters,

and Tx and Ty for the tails in the x and y directions respectively.
For brevity’s sake, when not ambiguous, we use the shorter notation
fjx,jy and omit the length of the tail on the Tx and Ty operators.

1. Intra-tile computation and tail storage: For each filter in order,
we compute its intra-tile subfunctions in parallel (Fig. 3, step 1a).
Similarly to the 1D case, we do the computation in place, and after
each filter, we copy the tails along its direction into a new memory
location (Fig. 3, step 1b). At the end, we have in memory f intra

nx,ny

and the {Tx(f intra
jx,0)} and {Ty(f intra

nx,jy )} tails.

2. Update of the x tails: Since the x filters happen first, we process
them similarly to the 1D case and apply Equation 6 to update the
tails {Tx(f intra

jx,0)} to get {Tx(fjx,0)} (Fig. 3, step 2).

3. Update of the y tails: The y tails are more complex because we
need to account for the x filters. The {Ty(f intra

nx,jy )} tails that we have
stored in the first step have only a partial information about the x
filters because they are computed only from intra-tile data. Thus,
before we can update these tails along the y axis as previously, we
need to “update them with the complete x information”. For this, we



use the {Tx(fnx,0)} tails that we computed in Step 2. We process
the y filters in order. We begin with the explanation of the first filter,
i.e., jy = 1.

3a. y Filtering of the x tails: We apply the intra-tile y filter to
the {Tx(fjx,0)} tails and keep only the y tails (Fig. 3, step 3a,
vertical arrows). We name the results {Ty

(
Tx(f

intray
jx,1 )

)
}. Since

Tx and Ty commute, these are also {Tx
(
Ty(f

intray
jx,1 )

)
}, which

is useful in the next step.

3b. x Update of the xy tails: For the rows selected by the Ty
operator, we have {Tx

(
Ty(f

intray
jx,1 )

)
} tails with the complete

result of the x filters (from Step 3a) and dense data {Ty(f intra
nx,1)}

with only intra-tile results (from Step 1). This is the same
configuration as the 1D case and we update the y tails by
applying Equation 6 along the x axis. This gives us Ty(f

intray
nx,1 ),

i.e., the y tails with the complete x result but still only the
intra-tile y result (Fig. 3, step 3a, corner arrows).

3c. y Update of the y tails: We now apply Equation 6 along
the y axis and restricted to the y tails to get the Ty(fnx,1) tail
with the complete xy result that we sought (Fig. 3, step 3b).

3d. Other y filters: We process the y-filters for jy > 1 the
same way. The only difference is that we have now more than
one y filter to take into account in Equation 6.

4. Final intra-tile update: We now have x and y tails with complete
results. We use an extension of Equation 6 for updating all the data
from the tails (Fig. 3, step 4):

fjx,jy,xo,yo ← f intra
jx,jy,xo,yo +

jx∑
`x=1

Px,jx,`xTx(f`x,0,xo−1,yo )

+

jy∑
`y=1

Py,jy,`yTy(fnx,`y,xo,yo−1) (7)

We give the details of the Py,jy,`y matrices in Sec. 3. This trans-
formation introduces two new categories of subfunctions: the y
intra-tile filters applied only to the x tails, and the x update of the
xy tails.

2.3.2 Higher-dimension case

We extend the transformation that we presented in the previous
section to more dimensions by repeating the same procedure that
we did to go from one to two axes. That is, we always start by
computing intra-tile results and tails after each filter. Then, we
process the dimensions in order and update the tails along them.
This requires filtering the tails of all the previous dimensions and
using them to update the tails of the current dimension. Finally, the
intra-tile data is updated using the complete tails adjacent to the tile.
This approach ensures that the dense data are processed only twice
and in parallel, once at the beginning and once at the end, the rest of
the computation involves only tails.

Because updating of the tails of a filter requires taking into account
the tails of all the previous filters, the number of generated subfunc-
tions grows quadratically with the number of filters. This makes
exploring the scheduling space challenging when developers code
each subfunction by hand. With our approach, this is offloaded to
the compiler, which makes the exploration easier.

2.4 Anticausal filters

Anticausal filters process data in the order of decreasing indices.
We can handle them by introducing two minor modifications to the

schemes presented earlier in this section. First, all the intra-tile
and inter-tile data traversals related to these filters are also done in
reverse order. Second, to update the intra-tile data, we use the tails
behind the current tile, that is, in Equations 6 and 7, the data in tile
(xo, yo) are updated using the tails of the (xo + 1, yo) tile if a filter
is along the x axis or (xo, yo + 1) if it is along the y axis.

3 Filter matrix computation

We first define the scan matrix B and tail completion matrix matrix
R. R computes the result of applying a filter on a tile of all elements
equal to 0 with tail of previous tile equal to 1. B computes the result
of applying a filter on a tile of all elements equal to 1 and tail of
previous tile equal to 0. We will later use these matrices to define P
and Pj,` used in the original text.

Note that the procedure to compute the B and R is independent of
the causality of the filter. Causality will be accounted for when we
compute P and Pj,` which are used in the final expressions in the
main paper.

3.1 Computation of B

Let the feedforward coefficient of the scan be a0 and the feedback
coefficients be {a1, a2 · · · ak}. The procedure to build B is as
follows:

Algorithm 2 Computation of scan matrix B

B← t× t zero matrix
for x = 0 to t− 1 do

B(x, x)← a0

end for
for y = 0 to t− 1 do

for x = 0 to t− 1 do
for j = 1 to k do

if y − j ≥ 0 then
B(x, y)← B(x, y) + ajB(x, y − j)

end if
end for

end for
end for

The above algorithm has to be modified if the input images has
clamped border as follows:

Algorithm 3 Computation of scan matrix B for clamped borders

B← t× t zero matrix
for x = 0 to t− 1 do

B(x, x)← a0

end for
for y = 0 to t− 1 do

for x = 0 to t− 1 do
for j = 1 to k do

if y − j ≥ 0 then
B(x, y)← B(x, y) + ajB(x, y − j)

else
if x = 0 then

B(x, y)← B(x, y) + aj

end if
end if

end for
end for

end for



3.2 Computation of R

We describe the procedure to build the matrix R in Algorithm 4.

Algorithm 4 Computation of tail completion matrix R

R← t× k zero matrix
for y = 0 to t− 1 do

for x = 1 to k do
if x + y < k + 1 then

R(x, y)← ax+y

end if
for j = 1 to k do

if y − j ≥ 0 then
R(x, y)← R(x, y) + ajR(x, y − j)

end if
end for

end for
end for

3.3 Filter matrices P and Pj,`

In a single tiled filter, the final result can be computed using the
contribution of the tails from the previous tile. P is therefore simply
the last k rows of R.

Consider multiple recursive filters in the same dimensions. The main
paper explains that the final result after j-th filter must include the
effect of all ` ∈ [0, j] tails for each of the proceeding filters. These
dependencies can be captured by the matrix Pj,` which propagates
the tail of `-th filter to the final result of the j-th filter with ` ∈ [0, j].
We describe the computation of this matrix using the R` and B` for
each of the `-th filters computed as described above.

Assuming that all filters ` have the same causality as filter j, Pj,`

is simply the concatenation of all matrices from previous filters and
the matrix from the j-th filter as under:

Pj,` =
(

Πj−1
i=` Bi

)
Rj

In the general case of mix causalities, we define Bi,j as:

Bi,j =

{
Bi if filters i and j have same causality
ĨBiĨ otherwise

where Ĩ is the antidiagonal matrix. We then modify the expression
for Pj,` as follows:

Pj,` =
(

Πj−1
i=` Bi,j

)
Rj

References

NEHAB, D., MAXIMO, A., LIMA, R. S., AND HOPPE, H. 2011.
GPU-efficient recursive filtering and summed-area tables. ACM
Trans. Graph. 30, 6 (Dec.), 176:1–176:12.


